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Theory of dark resonances for alkali-metal vapors in a buffer-gas cell
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We develop an analytical theory of dark resonances that accounts for the full atomic-level structure, as well
as all field-induced effects such as coherence preparation, optical pumping, ac Stark shifts, and power broad-
ening. The analysis uses a model based on relaxation constants, which assumes the total collisional depolar-
ization of the excited state. A good qualitative agreement with the experiments for Cs in Ne is obtained.
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[. INTRODUCTION important problem of field-induced processes in multilevel
systems such as coherence preparation, optical pumping, ac
Nonlinear interference effects connected with the atomidStark shifts, and power broadening. All existing theories can
ground-state coherence are now well known and widely uselie classified into three kinds: few-state modéssically,
[1]. One of the most promising classes of these effects, edhree-stateA systems [6,15,16, perturbation theoriefl7],
pecially for precise measurements, is that of supernarrodnd numerical simulationgs,15]. All three classes of theo-
dark resonancd®—4] that appear in the medium’s responsefies have disadvantages. The first theory neglects many de-
to bichromatic laser excitation when the laser frequency diftails of the actual configuration of atomic levels. Perturbation
ference is close to the atomic ground-state splitting. The us#heory neglects some effects induced by the presence of the
of vapor cells containing a buffer gas in addition to an alkali-optical field (namely, optical pumping, ac Stark shifts, and
metal vapor has allowed the measurement of resonance lingower broadening Numerical simulation theories demon-
widths less than 50 H{5,6]. While such resonances have strate a lack of genuine understanding and predictive power.
been extensively investigated experimentatgpecially in This paper presents an analytical theory that accounts for
the case of Q4 2], a detailed theoretical understanding is notthe level structure(both Zeeman and hyperfinef a real
yet well developed for realistic multilevel systems, motivat-atom, as well as all field-induced effects. The relaxation pro-
ing the present work. Our theory was developed in closé&esses are treated in the simplest way: by neglecting
connection with ongoing efforts to construct compact atomicvelocity-changing collisions and all effects connected with
clocks [3,7-9 and magnetometel®,4]. For any practical the spatial inhomogeneity, we reduce the model to the one
application of dark resonances, the stability and accuracy aréescribed simply by relaxation constants. The crucial as-
optimized with respect to parameters such as the output sigumption is total collisional depolarization of the excited
nal amplitude, the width, and the shift. In the problem con-State. In addition, we add th@ptiona) approximations of
sidered here, many parameters, such as laser detunings, fiéldmogeneous broadening and low saturation. With these ap-
component polarizations and amplitudes, and buffer-gagroximations, a general analytical result is obtained for the
pressure, affect the dark resonance itself. In addition, variougtomic response, which result is valid for arbitrary excitation
excitation scheme&or example,D, versusD; line excita- Sschemes D, as well asD, lines), light field polarizations,
tion [10]) and different atomic isotopes can be used. A natu@nd magnetic fields. In the specific case of circularly polar-
ral question arises: what design will optimize the perfor-ized light in the presence of a magnetic field, where only two
mance of the clockor magnetomet¢? Previous theories did States participate in the coherence preparation, analytical line
not completely answer this question. One main obstacle waghapes(generalized Lorentziancoincide exactly with the
connected with the complicated energy-level structure of th¢ghenomenological model heuristically introduced previously
real atomic systems used in the experiments. to fit experimental dat418]. In the case of zero magnetic
Generally speaking, there are several types of problems ifield, and when the contributions of different Zeeman sub-
the theoretical description of dark resonances. One problerstates are well overlapped, the resonance line shape is also
relates to a proper treatment of the relaxation processes in ti@proximately described by the generalized Lorentzian. A
system, including velocity-changing collisiof$l] and the comparison of analytically calculated coefficients of the
spatial diffusion of coherently prepared atofi®,13. Light ~ model (with no free parameterswith coefficients extracted
propagation through coherently prepared nonlinear medidrom the experimental data demonstrates a good qualitative
especially through optically thick medja4], can be thought agreement.
of as another type of difficulty. This paper addresses another

II. STATEMENT OF THE PROBLEM

*Present address: ‘Partement de Physique, Universite Fri- In this section, the general framework of the problem is
bourg, Chemin du Muse3, 1700 Fribourg, Switzerland. described, the basic assumptions we make are stated, and the
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dipole moment operator. The first term in K@) is indepen-
dent of time in the rotating basis, and we refer to it as the
resonant contribution. The second term, oscillating at the dif-
ference frequency, results in the off-resonant contributions to
the optical shifts and optical pumping rates, as well as in
temporal oscillations of the atomic density matrix. The role
of the off-resonant term in the case of a three-levedystem
has been studied in great detglib]. The amplitudes of the
oscillating parts of the density matrix can be approximated as
|dE|?/(AA)2. For the moderate field intensities considered
z here (<10 mW/cnt), this ratio is very small|dE|?/(2A)?
! ~10%-10"8, and the oscillating terms can be safely ne-
FIG. 1. Excitation scheme. glected. However, the off-resonant contributions to the opti-
cal energy shifts and widths can be significant, especially in
specific procedure for calculating the quantities of interest igshe case of large one-photon detunings.
outlined. We consider the resonant interaction of alkali-metal Hamiltonian for a free atom in the rotating frame can be
atoms in theS,;;, ground state with a two-frequency laser written as

field
. Or
E(z)=E, exd —i(wit—k;2)] Ho=—§ fi(6L— wele)(el—fi—
+E,exd —i(wot—kyz)]+c.c., (1)
: I x 2 (|1m)(Lm|=[2m)(2m). 3
where both components propagate in the positive direction m

(ky2>0). The field can excite atoms either to tRg, state
(D, line) or to thePy, state O, line). Two hyperfine(HF) ~ Hered =(6;+ 5,)/2 is the average one-photon detuniag,
components are present in the ground state with the tot@nd w. are measured from a common zero levVier ex-
angular moment&,=1+1/2 andF,=1—1/2 (wherel is the ~ample, from the HF level with maximal momentuif=|
nuclear spiin The HF splitting in the ground statda,=(&;  +Je), and og=3,— 1= w,—w;—A is the Raman(two-
—&,)/#, is in the range 1-10 GHz. The excited state has twd®hoton detuning.

(D, line) or four (D, line) HF levels with the angular mo- Sin'ce this' paper is goncerned with the fieId—induced ef-
mentaF,=1—Jg, . .., +J, and the energie§&,=fiw,. The  fects in multilevel atomic systems, the relaxation processes
HF splitting of the excited state is typically one order of @€ modeled by several constants. The homogeneous broad-
magnitude smaller thaa. To be more specific, we assume €ning of thg optlca! line, due mainly to collisions with a
that the frequencyw; is close to resonance with the,  buffer gas, is described by the constantWe assume that
—F, transitions, while the other frequenays is close to the the.exmted state is gompletely depolarized dge to collisions
frequencies of theF,—F, transitions. Thus, we have a during the radlatlv_e_ lifetimer,, i.e., the depolarization rates
A-type excitation scheméFig. 1). In the absence of an ex- Y« obey the condition
ternal B field, the HF levels are degenerate with respect to

the total angular-momentum projections. For the Zeeman

substates, the fo!lowmg shorthand notations wil _be used;I'he relaxation of the ground-state density matrix to the iso-
le)=|Fe, mg)  with me=—Fg, ... Fs, and [i,m)

e thm= — F F(iz12 tropic equilibrium, both due to the diffusion through the
=| i'm> with m=—F;, ... Fi(i=1.2). . laser beam and due to collisions, is modeled by a single
For simplicity, we consider first an atom at rest, posi-

tioned at th ain = 0). Each f t of constantl”.
loned at tne origin l._ .)' ach frequency component o Under the assumption of moderate field intensities and
the field can, in principal, induce transitions from both hi

i , oo h buffer-gas pressure, we develop the theory in the low-
ground-state HF levels. Then the interaction Hamiltonian 'nseguration Ii?nit' P P y
the dipole approximation contains contributions of two '
kinds:

Vi 7 1 (4)

<, (5)
Ho-e== 2 le)(el(d-E)li,m)(imi
v The two-photon dark resonance appears when the Raman

detuning ég is scanned around zero. The width of the dark

. i;j - |e)(el(d-Elj.m) resonance, which is related to the ground-state relaxation, is
T usually six orders of magnitude smaller than the optical line-
X (j,mle""@imedty H e, (2)  width y. The approximationsz<<1y is therefore suitable.

. ) ) It should be stressed that all approximations are well jus-
where we use a rotating franithe unitary transformation of tified for typical experimental conditions. For example, in
the ground-state basis,m)—expfwit)|i,m), andd is the the case of Cs in a background Ne atmosphere at a pressure
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of p=10kPa, the homogeneous broadening (i ,mi|(a. Ek)*|e><e|(a- E|)|j,mj>
~27860 MHz[19] of the optical line exceeds the Doppler
width kv ~27300 MHz, so velocity-changing collisions are
inconsequential. The collisional depolarization rate.

=[(3el|d|[I?r (Fe,Fi) r(Fe,F))

~2770 MHz [20] is large compared to the inverse radiative X > (—1)FetFitK

lifetime 1/7,=275.3 MHz. The Rabi frequencydE|/# K.q

~ 1/7, for the field intensity 8.8 mW/cf which results in a 1 1 K

saturation parametef[dE|/%)?7./y~10"2. The two-photon { EEE ] V2K+1(—1)Fi—mi
detuning is scanned in the rangés| <271 MHz, and the Pt e

ground-state relaxation rate can be estimated tolbe Fi K F

~2753 Hz[12,21]. | g mj){E; ®E}kq» (10)

Eliminating optical coherences with these approximations
(for details see the Appendixwe arrive at the following set

of equations for the ground-state density submatﬁogg(
=M4olly):

where(J¢||d||Jg) is the reduced matrix element of the dipole
moment and

>

Fo,F)=\(2J.+1)(2F+1 2F+1[Jg Je l}
%-FF n_g' (6) r( er i)_ ( e )( e )( i ) Fe Fi |
g

a&gf —i[Hegogg— oggHen 1+
e

. is the partial coupling amplitude of tie — F transition. In
Tr{oget=1, (7)  the general case, we have scalé=0), vector K=1), and
. quadrupole K=2) contributions. All possible selection rules
where II;=3,(|1m)(1m[+[2m)(2m[) is the ground- are contained in the coefficients of vector coupling, i.e., the
state projectorng=2(21+1) is the total number of sub- gj and 3m symbols.
states in the ground state, amd is the total population of For an atom moving along the direction of propagation of
the excited state. The first termx ) of the source in EQ. the optical field, the field frequencies are shifted due to the
(6) corresponds to the isotropic repopulation of the groundpoppler effect,w;— w;—k;v. As a result, a Doppler shift of
state sublevels due to the spontaneous decay of the excitgige one-photon detuning, — 8, —kv occurs, wheré= (k;
states. The other termw(") describes the entrance of unpo- +k,)/2, as does a residual Doppler shift of the Raman de-
larized atoms due to diffusion and collisions. Due to thetuning 5g— 6g— (k,—k;)v. At high buffer-gas pressure the
conservation of the total number of particl€8, separate residual Doppler shift is suppressed due to the Lamb-Dicke
dynamic equations for the excited-state denSity-matriX eleeﬁect[lz’zz_ However, in the genera| case the Dopp|er shift
ments are not needed. Both the dynamics and steady state &fthe one-photon detuning can be significant, and certain
completely governed by the non-Hermitian ground-stateyuantities must be averaged over the Maxwell velocity dis-

Hamiltonian: tribution. Nevertheless, for buffer-gas pressures typically
s r used in experiments, the approximation of homogeneous
Aog=— — > (|1m)(L,m|—|2my(2m|)+R—i =11, broadening is reasonable, as a first approach to the problem,
2 “m 2 because the homogeneous widthequals or even exceeds

@  the Doppler widthko .
Here we consider the steady-state regime, setting

Here the excitation matrix N ) z
(d/dt)o4q=0 in Eq.(6). As a spectroscopic signal, we con-

R ~ (i,m|(d-E)T|e)(e|(d- Ep)lji,m’y sider the total excited-state populatiary which is propor-
R= 2> [im) 5 , (j.m’|  tional to the total light absorption in optically thin media or
i,j.e,mm’ ATL(OL— we) Tivl2] to the total fluorescence. The following procedure is used to
_ (i ’m|(a_ Ej)T|e><e|(a- Ej)|i,m’) find 7. Frqm Eq.(6), the ground—sta?e density matrfiog,g is
+ 2 [i,m) > - expressed in terms af,, and thenr, is calculated from the
i#j,emm’ (0L + o)~ wi— we) Tiv/2] normalization condition(7). The solution of this algebraic
X (Q,m’| 9) problem can be obtained in a compact analytical form in two

important special cases. The first arises when both field com-

contains the resonartfirst summatiop as the well as the Ponents have the same simpéercular or lineay polarization
Off_resonan'[(second Summati()rcontributions to the optica| and there is no magnetic field. Here, for f’:\l suitable choice of
shifts and optical pumping rate¢Hermitian and anti- the quantization axis, the excitation matfcontains only
Hermitian parts, respectivelyThe nondiagonali@j) ele- diagonal elements with respect to the magnetic quantum
ments of the resonant term induce the Raman coherence beamber, i.e.,m=m’ in Eq. (9). The second case appears
tween the HF levels of the ground state responsible for thevhen a magnetic field is applied and just a few substates

dark resonance. contribute to the Raman coherence for arbitrary light polar-
The generic matrix element in EY) is calculated from izations and arbitrary magnetic-field directions. Both cases
the Wigner-Eckart theorem: are considered below.
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mials of second order in the effective detuning,

o ~
i- B . AB%tB )
T s _~
1,m) j_f_ C 32+ DdrtE
~ where
Fl _ _ — _ . _
V —ilU A=T1+T,, B=T I (I'1+1,)+8V?];
B c=T.T,, D=4UV(T;-T,); (12)
E=T2 T,+2T 4T +T,)(V2—U?) - 16UV
29m> ; The repopulation rate, corresponding to unit total population
in all m blocks, is
fz Fq -1
g=l > =m (13)
m=—F,

) ) and the total excited-state population is finally expressed as
FIG. 2. Effective two-level system, corresponding to ame

block. me=Te(NgB—T). (14
Il. SIMPLE LIGHT POLARIZATION In the general case, when polarizations of the field com-
(NO MAGNETIC FIELD ) ponents are different, or the same but elliptical, there is no

basis where the matricéd m/R|1,m’), (2m|R|2,m’), and

o A (1,m||§|2,m’) are simultaneously diagonal. In this situation,
Wh.en .the quantization axis 1S dlrepted °”h°9_°”6," to the POthe full equation set for the ground-state density-matrix ele-
larization .vec'tor(or.alterngtlvely linear polarlzatlloniwhen ments must be solved, including all possible Zeeman and
the quantization axis is aligned along the polarization veCRgman coherences. Nevertheless, one important exception

ton). We evaluate the total excited-state populatienin or- - shoyld be noted. If the optical linewidth is much greater than
der to determine how the dark resonance sigpaiportional  tne excited-state HF splitting> (e, max— e, min)» the quad-

to ;) depends on parameters such as the optical detuninl% ole contributions toR are negligible[17]. The vector
from resonance. Under these assumptions, the complete ﬁ%f .

! R ms are diagonalwith respect to the magnetic quantum
of equayons{G) can be split into independent blocks for each numbey in the coordinate frame witk as the quantization
magnetic quantum numben (m blocks. These blocks for axis, since[ E* X E;Jce,. Thus, we return to the case dis-
m= = F, contain only one equation for the substate popula-_" " ! 1176 '
tion 7(*F1. The other blocks withm= +F; contain four cussed above.
equations(two for the populations and two for the Raman

coherences corresponding to an effective two-level system
with the upper|1,m) and lower|2m) states(Fig. 2. The In a weak magnetic field, the ground-state magnetic sub-
parameters of the two-level system are expressed in terms Qdyels are split due to the linear Zeeman effect, which can be
matrix elements oR as follows: the population relaxation described by the following additional term in the effective
ratesT;=T+R™ include the optical pumping rate®™  Hamiltonian(8):

=2 Im{(i,m/Rli,m)}; the dephasing rate is';,=(T; X

+T,)/2; the effective detuningdg=g— (S{™—S4™) in- Hg= 2, mayli,m)(i,m|. (15)
cludes optical shifts™ =Re{(i,m|R|i,m)}; and the coher- o

ence between levels is excited by the complex coupling Here the quantization axis is directed along the magnetic
—iU=(1m|R|2m). Note that the phase of the matrix ele- field, andQ}; = uzg;B/% are the Zeeman splitting frequencies
ment(l,m|(a- El)*|e)<e|(a- E,)|2m) can be chosen equal with ug the Bohr magneton anl the magnetic flux density.

to zero without loss of generality, so th&2,m|R|1m) ;I;gﬁig J?‘;ﬁfnﬂfcggﬁﬂﬁg‘z ]?;(Cp;:)erz?ed through the elec-

We turn now to the case of circular field polarization,

IV. DARK RESONANCES IN A MAGNETIC FIELD

=(1,m/R|2m).
Both the upper and lower states are repopulated with the g9;—9,
same rate8=(m/7.+I")/ng. First the totaim-block popu- 9125 F 57 T

lation (™= 7{™ + 7{™ per unit repopulation rate is found.
For the outermost blocks,m==F;, #(FU=1/I"  The magnetic field causes a precession of atomic coherences
+ R(l‘Fl)). The result form# = F, is a quotient of polyno-  with frequenciesn Q;—m’ ();. When the Zeeman frequen-
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cies are much larger than the off-diagonal elements of thé is only sensitive to a magnetic field in second order. Here
excitation matrix Q;>|(i,m|RJi,m’)|, the light-induced the absorption signaipg has the form

Zeeman coherences within thth HF level are negligible.

Thus, we again have a set of independent two-level systems, v o_ Te _ 1 I

consisting of the substatdd,m;) and |2,m,) (where |m; Npr= TeNg 7+ 70 (3s) B n_g

—m,|<2 due to the selection rulgsThe formulag(11) and R

(12) for the total block population are still valid for every
: . S 1 1
(my, m,) block with the following substitutions: 7= + , (17)
m70 \ T+R{™  T'+R{™
Ti=r+RrR™,

where 7(%) is the total population of thenf=0) block per
~ ; ; : () i
B 5R—(S(lml)—3(2m2))—(m191—mzﬂz)? unit repopulatlon ratégee Eqs(11) and(12)]. Sincen'” is

a quotient of polynomials of second orderdp, the absorp-
tion can be written as the sum of an absorptive Lorentzian

ViU =(1m|R[2my) =(2my[R[1my). (160 514 4 dispersive Lorentzian, and a constant background:

If the Zeeman frequencies significantly exceed the widths

~ 2 ~
T“i , the Zeeman-split dark resonances are well resolved. In njj.=—-C; —= (v2) +Cyo—= (9=~ %) 712
other words, the Raman coherence between the substates (¥12)?+ (g~ 80)* (¥12)%+ (g~ 6)*
|1,m,) and|2,m,) is effectively induced when the precession + const (18
frequency is approximately equal to the Raman detuning '

Sr=my (1 —m; ;. This condition can be simultaneously the parameters in Eq18) are expressed in terms of the
satisfied for only a fewrfi,, m,) blocks. More precisely, the cyefficients introduced by Eq12) in the following way. The
nuclear Lande factor is typically three orders of magnitudeyark resonance position is governed by the optical shifts and

smaller than the electronic Lande factdor cesiumg;/9;  an additional term caused by the two-photon coupling be-
~2500); then, with good accurac,=—Q,=Q and the  {yeen levels:

Zeeman shift of the dark resonance position is proportional

to the sum of magnetic quantum numberg)=(m, DZ

+m,) Q. It can be seen that, in the general case, three 80=(S{"~S) +x, X= "3 (AT CZ)" (19
blocks (m, m), (m—1,m+1), and fn+1,m—1) contribute

to the coherence preparation for the resonances with everhe width of dark resonance reads

shifts 2m (), and two other blocksni—1,m) and (m, m

—1) contribute for the resonances with odd shiftsn{2 ~. ., BTEZ

—1) Q. When 6y is tuned around the resonance with given (v12) “atrcz X (20)
shift n (), the repopulation rat@ can be written as

The amplitudes of the symmetrical and antisymmetrical

-1
g=|z+ 3 amm Gy Lorentzians are found from the relations
mi+myo=n
_ ~ ., BC—AE-XAD
where the first summand does not depend on the Raman C(y/2) = (21
detuning: (A+C2)
! ! C,v/2 AD (22)
Z: + L ’y = ___ 5 .
my fp#n | T+RM 14 RI™ 277 (A+cz)?

and 7(M™) js the total population of theng;, m,) block. =~ The background consta@/(CZ+A)—I'/ny corresponds to

Owing to the nuclear contribution, a further increase of thethe absorption far off the two-photon resonance.

magnetic field causes the dark resonances to be eventually The result(18) for the resonance line shape is quite gen-
split into individual peaks, corresponding to each, ( m,) eral. In fact, it does not depend on our simplified assump-
block [23]. tions on the relaxation processes, but is valid also in the
low-saturation limit for arbitrary relaxation matrix, whenever
only two states participate in the coherence preparation and
OR<7y.

We now consider the dark resonance line shape in more Turning to the case of zero magnetic field and simple field
detall. First, we analyze the particular case in which just twgpolarization, we proceed with the goal of determining the
substateg1, 0) and |2,0) participate in the Raman coher- resonance position, width, and amplitudes of the symmetrical
ence, i.e., we consider the magnetically insensitive resonan@nd asymmetrical components as above. Since all Zeeman
(m=0) in a magnetic field. This (0, 0) resonance is of pri-levels within a given hyperfine level are now degenerate, we
mary interest for possible clock applicatiofs3,7] because rewrite the repopulation ratg (13) as

V. THE RESONANCE LINE SHAPE
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B=[Z+ (2F,+ 1){7™(5g))m] 1, (23
where
mh 1 1
Z= +
m==F \T+R™  T+R{M

does not depend ofir and corresponds to the absorption far

off the two-photon resonance; the sum of the variable parts

of the m block populations7(™(5g) is expressed through
the average ovan-blocks, where the average of a variaile
is defined as

m=F,

>

=7F2

(x(m)>m: X(m)

2F,+1
Since(M(5g) is a quotient of polynomials of second order,

2™ 5r - b

pu (m)( S ) —
1’ 1
A S5+al™ sg+b{™

D
ag-m):6 _ (ng)_ S(Zm))’

E D
bi™ == —(S{M = S) <+ (S{" - s{M)?,

BC-AE+AD (S™-sim)
CZ

(m)_AD

CZ

bim =

(29)

the averagé (™ (6g))m is a quotient of polynomials of or-
der 2 (ZF,+1). Generally this average describes a superpo-
sition of resonances with different widths and positions due
to them-dependent power broadening and ac Stark shifts, b
if the laser detuning is not too largej, |<A, all resonances
are well overlapped, and the average(™(5g))m can be
approximated by a quotient of polynomials of second order,
Here we use the following simple procedure, where the av-
erage of a quotient is substituted by a quotient of the aver,
ages:

(") mbr+ (D" m
Szt (ai™)mdr+(b{™)m’

(T (8R))m~ e (25)

and where the correction facter is chosen such that the
exact and approximate expressions coincidégat 0, i.e.,

R < >

-~ (bg7)
Our approximation forB yields an error less than a few

bi™
b{™
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Sz — <a(1m)>m (2F2+ 1 (¢4 <a(m)>m
0 2 Z 2
5 (2F +1)
(712)2= (™)t —— 2L b, — 2,

<b(2m)>m+ <a(2m)>m50

C,(712)?=(2F,+1)

22
(m)
~ a
C2(7/2)=(2F2+1)a< 2 >m,
22
1 T
const= Z o (26)

g

VI. COMPARISON WITH EXPERIMENT

The analytical line shap€l8) coincides exactly with the
phenomenological model heuristically introduced previously
to fit experimental datfl8]. In those experiments a vertical-
cavity surface-emitting laser was modulated at the 9.2-GHz
hyperfine splitting frequency of the cesium atom, so that the
laser output spectrum contained modulation sidebands at this
frequency. Using the carrier and one of the sidebands, the
dark resonance could be prepared and spectroscopically ob-
served as a function of detuning of the laser frequency
from optical resonance. Data were taken for three different
power ratios of the carrier and sideband, with the cesium
atoms contained in a cell with 8.7 kPa of neon as a buffer
gas. Detection used a modulation technique that allowed to
extract simultaneously the absorption and the dispersion line
shape[24]. For each detunings, , both line shapes were
S|multaneously fitted by the model functi@a8), with C,,

C,, v, andd, as free parameters. Actually, as far as the line
sfhapes themselves are concerned, this is a two-parameter fit:

C,/C, andy describe the shape, and the rest the overall
amplitude and position of the dark line.

Since these experimental data for Cs in Ne are fitted by
Eq. (18) quite well, we can compare analytically calculated
coefficients of the generalized Lorentzian to those extracted
from the experimental data. The dependence of the coeffi-
cients on the total light intensitfe|E,|%+ |E,|? is almost
trivial, at least when the power broadening{{)+R{™)/2
exceeds the dephasing rdtein zero field—all the param-

etersC;, C,, &, andy scale asZ. Thus, the most repre-
sentative test is provided by the dependence of the coeffi-
cients on the one-photon detunidy and on the intensity
ratio R=|E4|%|E,|? between the two field components.
Such comparisons with experimental fit parameters from
Ref.[18] are presented in Figs. 3—6, whetg, C,, &, and

y are plotted as functions o, for three different relative

intensities,R. The other parameters used in the calculations
correspond to the experimental conditions: excitatiorofly

percent across a wide range of parameters. With this approxpolarized radiation, total intensitf=0.4 mWi/cnt, optical

mation, we return to the resonance line shé@®, where the
parameters are expressed in terms of the averageshover

linewidth y=27750 MHz, and ground-state relaxation rate
I'=27150 Hz. We use no free parameters, just a single
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0.3

c)
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0.0 o
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5, (GHz) 8, (GHz)
FIG. 3. Absorptive coefficien€; versus optical detuning, . FIG. 4. Dispersive coefficienC, versus optical detuningg, .

Plots(a), (b), and(c) are forR=2.4, 7.2, and 22, respectively. The Plots(a), (b), and(c) are forR=2.4,7.2, and 22, respectively. The
solid lines indicate the theoretical predictions, while the points in-solid lines indicate the theoretical predictions, while the points in-

dicate the experimental data taken from HaB]. dicate the experimental data.
trivial scaling factor forC; andC, and a constant offset for D 2(T,-TyHuvVv
&g that accounts for the collisional shift of the dark reso- X~ - ¢ ©v_

o rir
nance position. re

We see a good qualitative agreement, especially for the o _ o _
resonance positiod, and for the widthy. There are some IS Negdligible with respect to the other contributionsgy v,
noticeable discrepancies for the amplitud@s and C,. In and Cl_. The resonance position offset and the width are
particular, we can see that the theoretical curveGgrcan ~ @PProximated as
cross the zero level at largg , which can be attributed to
the well-known Raman absorption, but is not observed in the 50“5(10)—3(20),
experimental data.

T T \2
(v12)%°~ E~T§Z+ WVZ. (27)
VII. D, LINE EXCITATION AND CONNECTION C rir,
TO PREVIOUSLY EXISTING THEORIES

In the specific case of thB, line of Cs at high buffer-gas The amphtude}:l andC, are given by Eqs(21) and (22)
pressure, the two-photon amplitudés and V are much  With x=0 andy from Eq. (27). _
smaller than the optical pumping rat%o) and the optical These r.esults can be cor-npar.ed_ with those for a three-level
shifts S, respectively, because the most probable opticaf® SYStém in the low-saturation limit. Our formulés)—(22)
transitionsF ;— F o=+ J, andF,— F .= — J, contribute to will describe this last case, as well, if we s££0, i.e.,
the one-photon transitions but not to the two-photon Raman
coupling. Note that the ratio betwean and R(?) can be
arbitrary, depending on the one-photon detuniég As a
result, the part of the absorption signal that varies wihis
small compared to the constant one, and we arrive, to lowest BC—AE D
orders, at the following approximate expressions. The pa- C1(~y/2)2=—, CZX//Z:—. (29)
rameter A? A

~ B -
o=8{"=8{), (y2)?= 4 =Ti,+4 V2,
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410, &, (kHz) 20,Y (kHz)

46.5- =
46.0 .
3 2 1 0 1 2 3 003 2 1 0 1 2 3
47.0- 20
b)
15 A b)
46.5-
5 ) 1.0
i x
054 = £ [}
iy
46.0 .
3 2 1 0 1 2 3 0'0.3 2 1 0 1 2 3

46.0 T —*

s, (GHz) 5, (GH2)

FIG. 5. Frequency shifé, versus optical detuning, . Plots(a), FIG. 6. Dark resonance widfy versus optical detuning,

.(b)’. and(c) are forR . 2.4, 7'2’. a_nd 22, refspectlvely._ The_ So.“d lines Plots(a), (b), and(c) are forR=2.4,7.2, and 22, respectively. The
indicate the theoretical predictions, while the points indicate the 7. - . - : S

: solid lines indicate the theoretical predictions, while the points in-
experimental data.

dicate the experimental data.

Thus, the results are qualitatively similéhe main differ- ) o »
ences are the overestimated amplitu@gsandC,), but now  One possible definition of the resonance position, corre-

all parameters are unambiguously defined for the actuaiPonding to the combined minimum of the absorptive part,
atomic structure. and zero of the dispersive part, of the resonance described by

WhenC,=0 the line shape is symmetrical, and occurs if Eq0(1_7)- Eas(18)(22 v find th bl
V=0 orT';=T',. The first condition generalizes # =0, sing Eqs(18)~(22), one can easily find another possible

and the second corresponds to the condition of equal Ral()jleflnmon of the resonance center: the Raman detuning cor-

frequencies in a simpld. system. responding to minimum absorption,

WhenV=0, the amplitude of the symmetrical signal is

proportional to the square of the two-photon coupling: T (T-—-T) V
b= S0 g0 12T V. (30)
- - r,+r, U
c 2(T1+T))° , 29
1 T (Tt Tyt ZT4T )2 ' A third possible definition is the pointy, where the disper-

sion npr associated with the absorptiofl8) (by the
which is a key point of the perturbative stud[@g] but now,  Kramers-Kronig relationsis equal to zero. This is found to
in addition, all effects of the optical pumping are accountedoe
for in the prefactor in Eq(29).

VIIl. DARK RESONANCE POSITION: THREE _ e Z %
Yo= 0o . (31
POSSIBLE DEFINITIONS 2 Cl

The center position of the dark resonance in essence d&ach of these three quantitiesy,, yo, and o, could be
termines the output frequency of the frequency reference dronsidered the resonance center, depending on how the reso-
the magnetic field indicated by the magnetometer. Especiallance is measured experimentally. In the general asymmetri-
for asymmetrical resonances, it is somewhat unclear exactf@! case, whev#0 (nonzero effective one-photon detun-
how that center position is defined. The quantifyabove is ing) and I';#I', (unbalanced optical pumping rajesall
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307 9, 6., Hz) ical analysis presented here will lead to further refinement
20 and development of current and future applications based on
] dark resonances.
10
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-507] T T . T . T . . APPENDIX: DERIVATION OF EQ. (6)
2 -1 0 1 2
" In this appendix we consider in detail the derivation of the
s, (GHz) basic equation s€b). As is well known the atomic density

matrix obeys the generalized optical Bloch equation. Accord-
FIG. 7. Three possible definitions of the dark resonance posiing to this equation, the evolution of the density matrix can
tion. The centroidd, corresponds to the solid liné,, corresponds  pe split into two parts. The reversible oned/dto

to the dotted line, ang, corresponds to the dash-dotted line. All _ _ . SN . .
curves are calculated for the @, line. The parameters aré i/#{H,0]) is governed by the total Hamiltonian of an

=45 uWicn?, R=0.5, andy=2850 MHz. atom in a resonant external fiefti=Hy+Hp_¢. The irre-
versible part originated from the interaction with environ-
ments(e.g., buffer gas or vacuum modes of electromagnetic
field) are modeled by relaxatiofsupejoperators of various
kinds. The concrete form of the relaxation terms will be
specified in the course of the derivation.

The first stage is the elimination of the optical

three values are different. Even their behavior verguss
qualitatively different(Fig. 7), near the one-photon reso-
nance ¥=0) the centroidd, of the Lorentzians has a dis-
persionlike shape, whilé,, is rather of an absorptive na-
ture, andy, has a more complicated shape of mixed type. In A P .
addition, 8, and &, are always finite, whereag, goes to coherences oeg=1leolly, where the operator Il,
infinity at the zeros oC,. These different dependences on = >m,|Fe:Me)(Fe,Me| projects on the given HF component
optical detuning could, for example, alter the sensitivity ofof the excited state. In the low-saturation limit, the optical
the frequency reference or magnetometer to the optical lockoherence matrix obeys the following equation in the rotat-
point. As a result, careful consideration must be given to théng frame:
resonance detection method while designing frequency ref-

erences or magnetometers based on dark resonances.

d
—+ YI2—i (6. — we)

dt Teg
IX. CONCLUSION
Using very simple assumptions about the relaxation pro- ='_[ E ﬁe(a. E)IT;
cesses, analytical results can be obtained for the nonlinear h|iS12

absorption of bichromatic radiation near a two-photon reso-
nance. The theory fully takes into account both the HF and
the Zeeman level structures of alkali-metal atoms, as well as
all light-induced effects. Our results constitute a good basis

for understanding experimental works, and further possible _ .
refinements of theory are possible. In particular, the case ¢P" the left-hand side, the Raman detunigis small com-

large Doppler widthkv>y can be immediately studied by Pared to the homogeneous widtly (I6rl<y); 11

the substitutions, — 8, — ko followed by averaging over the =Zn|Fi,m)(F;,m|, so thatll;=1II,+II,. As is explained

Maxwell distribution. in the main text, the oscillations of the ground-state density
In addition, the theory allows for a simple parametrizations,ubmatrix(}gg can also be safely neglected in the rotating

of experimentally measured dark resonances in terms of alirame. Then, in the stationary regimeté 1) the solution of

sorptive and dispersive components. The theory can therehe equationAl) is

fore predict, for example, the detuning for which the disper-

sive part of the resonance is minimized and, for a given o R

detuning, the asymmetry in the resonance line shape that A i IT(d- Ep)IIT;

might be expected. The analysis of different definitions of 0T 5 | 1S yI2—i (5, — we)

the resonance center position is also of interest for practical '

applications based on dark resonances such as atomic fre- P o i o)t

guency standards and magnetometers. It appears likely that Ile(d-EpIlje "

the additional understanding gained by the thorough theoret- 7 ¥I2=1(0.— we) —i(w;— w))

5> ﬁe(a.Ei>ﬂjei<wiwm]&gg. (A1)
i1 #]

Ogq- (A2)

033810-9



TAICHENACHEYV et al. PHYSICAL REVIEW A 67, 033810 (2003

Under the conditions considered here, the equation for thenduced transition from the ground-state levels. This last

ground-state density submatrix can be written as term can be considered as a source, because it is proportional

d o i t0 oyq:

A - ~ 0 A
gt%00~ ~T(ogg=0gg) = 7 [Ho. 0l i
- %PEHD*EUPE
i . = “ -
_g(Hg HD,EO'Hg_H.C.)"_A{U'ee}, (A3) R " A R n .
_i 2 He/(dE|)H|UggHJ(dEJ) He
. . . _— 52 < 12+i(6, —

where the line over operators indicates time averaging, i.e., h FeFe W M Y (L= we)

all the oscillating terms should be removed from the product
Hp_g o. Using Eq.(A2), one finds that Il (d-EITjoggll;(d- Ey) I,
+> . .
7 Y2+i(6 — wet i~ w))

The structure of the collisional terg¥ o can be found in

Ref.[20]. Here we simply recall that during the course of a
collision only the electronic component of the atomic polar-
ization is depolarized. The nuclear component is involved in
the process of depolarization due to the HF coupling. For all

whereR is the excitation matrix given by Eq9). The first
term on the right-hand side of E¢A3) describes the relax-
ation in thedgrﬁund Stﬁg@ue g? b%th _dlﬁu5|0ndan(:r|] C?"" alkali-metal atoms, the excited-state HF splittihigis much
siong tﬁ)z/(\)/;';lr At € equit rlum. Istri upon outside tAe aSer greater than radiative decay raterd/ In addition, we as-
beam, oqg=1IIg/ng. All the linear (with respect t0agqg)  sume that the collisional relaxation ratgg for the excited-
terms, containingl’, Hy, and R, can be combined in the state electronic multipole moments of ramk=1, ... ,2,
effective non-Hermitian Hamiltonia8). The last term on +1 also obey the conditiong, 7.>1 (for k=0, we assume
the right-hand side of EQA3) corresponds to the spontane- y,=0, i.e., the collision-induced transitions between the
ous radiative transfer of atoms from the excited states, givefine-structure components are not considered )hénethis

by the density submatrix (}ee: 756 2,756 (where 736 limit, Ag7e> 1_ andyKre_>1, the steady-state solution of Eq.
=3¢ o), to the ground-state levels. Its structure will be (Ad) has particularly simple form

specified below.

In the low-saturation limit, the matrix ., obeys the equa- ~ Pe . o~
tion ee ODCY q Tee=Te— Te= 7e(i T{R ogg} +C.C), (A5)
e

d. 1. P R which corresponds to total collisional depolarization of the
gioee™ 0™ 7 [He,0cel ~Gloee excited state. . . 3
Here we shall illustrate this fact in one specific case, when
i .= —. the excited-state HF splitting is much larger than the depo-
~ 7 (PHp-gaPe—H.C), (A4)  larization ratesy, and when all the depolarization ratex-

cept fory,) are the saméso-called pure electronic random-
where the first three terms on thg right-hand side describe thgggfrgnrzgdiﬁlEﬁg])é;::itééizaﬁé.l/;%’r gﬂ?e ngc?rf)%liic:alr:g om-
radiative decay, the HF splittingH.=%2 w.ll), and the jzation both eigenvalues and eigenvectors of the Liouvillian
collisional depolarization of the excited state, respectivelyG are well known[20], which allows us to write the steady-
the last term corresponds to the excitation due to lightstate solution of Eq(A4) for arbitrary y, 7.:

oo Te 4 ViTe Te _1)Fe—Fé(2Fe+1)(2Fé+l)|Fe Fe L]
ee 1+ ’)/KTe © l+ ’}/K’Te LyMyFeyFé 1+’:}"L7'e (ZJe+ 1) I I Je
X Fe Fe L Tm(FoF)THT W(FLEDS) (A6)
I | Je LM e’ e LM e e ef -
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Here the source has the form As is seen from Eq(A7), the ratesy, are of the order ofy,
N NS (A A apart fromy,=0. Then in the limity,r.>1, the leading
éezl > (2 Me(d-E)ITioggll;(d-§y) Tle term of Eq.(A6) corresponds to the summand with=0,
h? Fo \ 1] (v12)%+ (8, — we)? which leads directly to the solutiofA\5).
.. A e When the excited-state HF coherence is negligible, the
[e(d- BT oy lT(d- Ey) He) radiative repopulation term in EGA3) can be written as
= 2 _ N2 ]!
7l (Y124 (6. — wet 0 — w)) I _i z r(Fe,Fi)Z_AI_T o
the relaxation rates {oed= TeFlq 3 1q(FeFi) oeeT1g(FeFi)-
A8
~ (2Fe+1)%(Fe Fe L|? (A9)
Y=Yk 1_,:28 IA4D) | 11 3 | One can easily prove the fundamental property
L=0,...,2+1 (A7) s L Nes
bee A Pey=——Il,, (A9)

Te N
correspond to the Zeeman projections of the nuclear multi- ©e
pole moments of rank [20], and the Wigner tensorial op- which expresses the isotropy of the radiative relaxation.

erators are defined as Thus, we see that in the case of total collisional depolar-
ization of the excited state, when the excited-state density
Tm(FaFp)= > |[Fam)V2L+1(—1)Fama matrix is proportional t&®, [as shown in Eq(A5)], Eq. (A3)
Mg My is reduced to Eq(6). In addition, the expression for the
E L E optical coherence matrid2) allows one to calculate various
( a b (Fp,my|. spectroscopic signalGs well as the total absorptignfor
—-my M m, ' example, the total dispersion.
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